Think Complexity: Complexity Science and Computational Modeling
Complexity science uses computation to explore the physical and social sciences. In Think Complexity, you'll use graphs, cellular automata, and agent-based models to study topics in physics, biology, and economics.
Whether you're an intermediate-level Python programmer or a student of computational modeling, you'll delve into examples of complex systems through a series of worked examples, exercises, case studies, and easy-to-understand explanations.
In this updated second edition, you will:
- Work with NumPy arrays and SciPy methods, including basic signal processing and Fast Fourier Transform
- Study abstract models of complex physical systems, including power laws, fractals and pink noise, and Turing machines
- Get Jupyter notebooks filled with starter code and solutions to help you re-implement and extend original experiments in complexity; and models of computation like Turmites, Turing machines, and cellular automata
- Explore the philosophy of science, including the nature of scientific laws, theory choice, and realism and instrumentalism
Ideal as a text for a course on computational modeling in Python, Think Complexity also helps self-learners gain valuable experience with topics and ideas they might not encounter otherwise.
Earn by promoting books
Earn money by sharing your favorite books through our Affiliate program.
Become an affiliateAllen Downey is a professor of Computer Science at Olin College and the author of a series of free, open-source textbooks related to software and data science, including Think Python, Think Bayes, and Think Complexity, published by O'Reilly Media. His blog, Probably Overthinking It, features articles on Bayesian probability and statistics. He holds a Ph.D. in computer science from U.C. Berkeley, and M.S. and B.S. degrees from MIT. He lives near Boston, MA with his wife and two daughters.