Modeling Techniques in Predictive Analytics with Python and R: A Guide to Data Science

Thomas Miller (Author)
Backorder (temporarily out of stock)

Description

Today, successful firms win by understanding their data more deeply than competitors do. They compete based on analytics. In Modeling Techniques in Predictive Analytics, the Python edition, the leader of Northwestern University's prestigious analytics program brings together all the up-to-date concepts, techniques, and Python code you need to excel in analytics. Thomas W. Miller's balanced approach combines business context and quantitative tools, appealing to managers, analysts, programmers, and students alike. This important reference addresses multiple business challenges and business cases, including segmentation, brand positioning, product choice modeling, pricing research, finance, sports, Web and text analytics, and social network analysis. He illuminates the use of cross-sectional data, time series, spatial, and even spatio-temporal data. For each problem, Miller explains:
  • Why the problem is significant
  • What data is relevant
  • How to explore your data
  • How to model your data -- first conceptually, with words and figures; and then with mathematics and programs
Miller walks through model construction, explanatory variable subset selection, and validation, demonstrating best practices for improving out-of-sample predictive performance. He employs data visualization and statistical graphics in exploring data, presenting models, and evaluating performance. Extensive example code is presented in Python, a new and extremely popular language for applied statistics, statistical research, and predictive modeling; all code is set apart from other text so it's easy to find for those who want it (and easy to skip for those who don't).

Product Details

Price
$79.99
Publisher
Pearson FT Press
Publish Date
October 01, 2014
Pages
418
Dimensions
7.3 X 1.2 X 9.3 inches | 2.0 pounds
Language
English
Type
Hardcover
EAN/UPC
9780133892062

Earn by promoting books

Earn money by sharing your favorite books through our Affiliate program.

Become an affiliate

About the Author

THOMAS W. MILLER is faculty director of the Predictive Analytics program at Northwestern University. He has designed courses for the program, including Marketing Analytics, Advanced Modeling Techniques, Data Visualization, Web and Network Data Science, and the capstone course. He has taught extensively in the program and works with more than forty other faculty members in delivering training in predictive analytics and data science. Miller is co-founder and director of product development at ToutBay, a publisher and distributor of data science applications. He has consulted widely in the areas of retail site selection, product positioning, segmentation, and pricing in competitive markets, and has worked with predictive models for over 30 years. Miller's books include Data and Text Mining: A Business Applications Approach, Research and Information Services: An Integrated Approach for Business, and a book about predictive modeling in sports, Without a Tout: How to Pick a Winning Team. Before entering academia, Miller spent nearly 15 years in business IT in the computer and transportation industries. He also directed the A. C. Nielsen Center for Marketing Research and taught market research and business strategy at the University of Wisconsin-Madison. He holds a Ph.D. in psychology (psychometrics) and a master's degree in statistics from the University of Minnesota, and an MBA and master's degree in economics from the University of Oregon.